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Adaptive Flight Control Software 
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Over the last five decades, extensive research has been performed to design and develop 

adaptive control systems for aerospace systems and other applications where the capability 

to change controller behavior at different flight conditions is highly desirable.  Although 

adaptive flight control has been partially implemented through the use of gain-scheduled 

control, truly adaptive control systems using learning algorithms and on-line system 

identification methods have not seen commercial deployment. The reason is that the 

certification process for adaptive flight control software of this kind for use in national air 

space has not yet been decided.  The purpose of this paper is to examine the gaps between 

the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight 

control system software and what will likely to be needed to satisfy FAA certification 

requirements.  As these major certification gap areas are presented, a description of the 

current state of the verification methodologies, and what further research efforts will likely 

be needed to close the gaps remaining in current certification practices will be discussed. It is 

envisioned that closing the gaps will require advances in hybrid simulation methods, the 

development of new methods to analyze learning algorithm stability and convergence rates, 

the development of performance metrics for adaptive controllers, the application of formal 

software assurance methods, the application of on-line software monitoring tools for 

adaptive controller health assessment, and the creation of a certification case for adaptive 

system safety of flight. 

Nomenclature 

A, B = matrices 
e = error vector 
f = generic function 
P, Q = generic symmetric positive-definite matrix 
u = control vector 
uAug = control augmentation vector 
V = Lyapunov function 
w = weight of neural network 
x = state vector 
y = measurement vector 
 

I. Introduction 

ver the last five decades, extensive research has been performed to design and develop adaptive control 
systems for aerospace systems and other applications where the capability to change controller behavior at 

different operating conditions is highly desirable.   An adaptive controller changes its behavior by allowing the 
controller forward or feedback gains to be effectively adjusted once the controller has been placed into operation.1-5 
Because designing such a controller introduces many complexities, it is generally held to be good practice to use a 
non-adaptive or "classical" controller design if one can be found that delivers acceptable performance.  This is 
because although proven techniques to evaluate the dynamic response and controller stability exist for non-adaptive 
controllers (e.g., root-locus, Bode plots, Nichols charts, etc.6,7), techniques for adaptive systems are only yet in their 
infancy. 
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The only adaptive flight controllers that are certified for use in national air space are generally those that involve 

the use of a technique called gain scheduling.6  To implement this scheme, a non-adaptive controller is designed for 
a specific flight condition and vehicle configuration.  The controller feed forward and/or feedback gains are then 
optimized for this flight condition.  In simulation of the controller, the gains are tested at other flight conditions.  If 
the performance is no longer good, new controller gains are computed.  The perturbation of the flight conditions is 
repeated until the full flight regime is covered.  The controller gains calculated for the various operating conditions 
and aircraft configurations are stored in a computer look-up table.  The flight control computer is programmed to 
select the correct gains based on the current flight condition (airspeed, altitude, etc.) and vehicle configuration.  The 
utility of this approach, from a certification point of view, is that each set of controller gains can be verified and 
validated by simulation and flight testing at the specific flight conditions for which they were chosen.  Gain-
scheduling thereby offers a means of partial adaptive control capability, while avoiding many of the problems 
associated with continuously changing controller gain values.  By using a fine enough grid of flight conditions and 
vehicle configurations, virtually any pre-defined set of flight conditions can be handled using the gain scheduling 
method.  The success of the gain scheduling method depends in large part on the degree to which the system can be 
characterized to operate at discrete flight conditions.  For example, a few regimes could be airplane take-off, ascent 
phase, stead-state flight phase at a few altitudes, descent, and landing.  

The focus of this paper does not concern the certification of gain-scheduled flight controllers, but rather a new 
breed of adaptive controllers that use system identification or some form of on-line learning to identify the optimal 
controller gain settings, system transfer matrices, or stability derivatives in real-time.  Adaptive flight control 
systems of this type are currently being developed to help pilots recover from aerodynamic upset conditions,8,9 to 
regain vehicle handling qualities and stability in the event of aircraft damage or control surface failure10, to 
automatically fly vehicles autonomously in both air and space environments11-15, to maintain vehicle performance 
during changing operating environments through use of neural networks,16-18 and to guide munitions to their 
targets19.  These types of adaptive flight control systems must operate in highly non-linear and non-deterministic 
environments.  Gain-scheduled control cannot be effectively used for these applications because the specification of 
all upset flight environments, the degree of control surface failure, or extent of aircraft or engine damage would 
require gain sets for an infinite number of flight conditions.  Instead, for these applications, it is more efficient to 
assume the structure of the controller and use learning algorithms or on-line system identification methods to obtain 
the locally valid controller gain parameters.   

Figure 1 provides a notional diagram of an adaptive control system to illustrate two possible ways to implement 
adaptive control.20  In one way, a learning algorithm is used to compute flight control inputs to augment the controls 
produced by a non-adaptive flight controller.  The other approach shown is to use a system identification algorithm 
to calculate gain parameters used by the flight controller.  In this representation, the controller gains are not 
explicitly shown, but reside inside the flight controller box.  The arrow through the box indicates the modification of 
the gain parameters inside the flight controller.  It is possible to introduce adaptation using both methods at once and 
other schemes to introduce adaptive behavior are certainly possible. 

Although the potential benefits of adaptive flight control systems are substantial, no adaptive flight control 
systems have been certified by the Federal Aviation Authority (FAA) for use in the national air space.  The reason is 
that the means whereby adaptive flight control software can be routinely verified, validated, and certified for use in 
national air space has not yet been decided.  As will be shown in the next section, the FAA has endorsed the use of 
RTCA DO-178 to provide certification guidelines for all flight software. Although software techniques exist to 
verify and validate conventional flight control software, the means to provide sufficient assurance of adaptive flight 
control software functionality, reliability, safety, and the absence of unintended functionality remains to be 
determined.  If an adaptive flight controller is designed to make rapid and automatic adjustments to correct some 
diagnosed malfunction, it also has the ability to make a healthy aircraft un-flyable in the event of controller software 
failure.  In a military application over restricted air space, such failures may be tolerated if not too high, but for a 
commercial application in civilian air space, such failures are unacceptable.  Adaptive control systems with learning 
software will therefore never become part of the future unless it can be proven that the controller software is highly 
safe and reliable. 

The objective of this paper is to examine the challenge areas that need to be addressed to enable the certification 
of adaptive flight control software for use in civilian air space.  These are the gaps between the state-of-the-art 
methodologies used to certify conventional (i.e., non-adaptive) controller software and what is likely to be needed to 
satisfy FAA certification requirements. 
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Fig. 1 Some ways to make a flight controller adaptive. 

 

II. Where are the Certification Gaps ? 

In the United States, the authority responsible for certifying flight control software is the Federal Aviation 
Administration (FAA). The FAA has stated in Advisory Circular 20-115B that all flight critical software must be 
developed according the guidance provided in RTCA DO-178B21 or show compliance to airworthiness standards 
using some alternate means of compliance.  Since the alternate means of compliance are undefined, the statements in 
DO-178B are generally regarded as certification requirements, rather than as mere guidelines.  The objective of DO-
178B is to help the aviation community develop flight software that can perform its intended functions while not 
negatively impacting other systems or the safety of aircraft operations.  The document is maintained by the RTCA 
(Radio Technical Commission for Aeronautics) which is a private association of over 250 aeronautical organizations 
(established 1935).   

DO-178B is not a process guide to software certification, but rather a description of what high-quality software 
development processes should be put in-place in order to create airborne software that performs its desired function.  
It levies no special requirements for adaptive flight control software; it is meant to apply to all airborne software.   If 
it can be adequately demonstrated that these processes have been correctly and appropriately implemented, then any 
such flight software is, in principle, certifiable.  This section highlights the specific guidelines recommended by 
RTCA DO-178B that, in the author’s view, are potentially difficult for adaptive flight control software to fully 
satisfy.  These areas indicate where the gaps are reside and what infusion of new verification and validation 
techniques and methods might be needed to close them.  

Table 1 provides a generalized summary of the basic DO-178B guidelines.  This list has been generated by the 
author and is not intended to serve as a comprehensive index to the standard since it combines the intent of similar 
topics under general headings.  However, it is useful for discussion purposes.  The first column provides a list of the 
guideline categories or processes called for in DO-178B.  The second column indicates which of these are more 
difficult for adaptive flight control software.  So, for example, the first guideline, “provide an overview of the 
system and target application software”, is marked “No” in the second column because this task is not more difficult 
to perform for adaptive flight control software than for conventional flight control software.  As can be seen from 
the table, the majority of the guidelines do not present special problems for adaptive control software; they are 
equally difficult for non-adaptive flight software.  

The rows marked with the "YES" designation in column 2 of Table 1 help identify the gap areas impeding the 
certification of adaptive systems.  Defining software performance requirements is difficult due to lack of metrics to 
assess adaptive controller performance.  Providing a software verification plan is difficult because it is hard to 
specify all possible failure modes of an adaptive controller in a highly nonlinear and non-deterministic environment, 
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and know the anticipated or expected behavior beforehand.  Software requirements are difficult to specify because 
knowledge of how much learning is enough to provide good control is usually not known.  All of these make 
determination of test cases to verify software function difficult. 

Some airborne software developers argue that there is no guideline in RTCA DO-178B that cannot be satisfied 
using the same software assurance methods as are presently used for non-adaptive flight software.22  First, since DO-
178B does not provide metrics to assess the adequacy of the verification and validation plans, it is somewhat of a 
judgment call to know when verification and validation plans are sufficient.  This function is given to the DER 
(Designated Engineering Representative) who negotiates the certification process with the FAA and the software 
vendor.  Second, it is argued that adaptive controllers behavior is only more difficult to prove because of the non-
deterministic environments in which the software is designed to operate.  This view, however, is not a systems 
approach; that is, the non-determinism cannot be ignored, regardless of the source. 

The remaining sections of this paper discuss major gap areas in regards to the certification of adaptive flight 
control systems.   Each of these sections describes a major gap area, presents a description of the present day state-
of-the-art in these areas, and cites what further research efforts will likely be needed to close the gaps in the 
certification process.   As shown in Table 1, most of these gaps generally fall under the DO-178B guidelines related 
to the development of the software verification plan.  The software verification plan and verification tests provide a 
description of each activity in the software verification process.  Generally, software verification is comprised of 
software review, software analysis, simulation, and testing.  These activities may include the use of software 
programming checklists and formal software analysis and testing methods.  Software analysis methods can include 
formal methods, static analysis, code reviews, traceability analyses, and coverage analyses.20  The software 
verification plan establishes the rational for the development of software test cases and methods. 

 

Table 1: List of DO-178B Guidelines for Software Certification 

 

DO-178B Guideline Topic 
More Difficult 
for Adaptive 
Systems ? 

Provide an overview of system and target application of software No 

Provide an overview of what the software does No 

Identify the software lifecycle No 

Define the software performance requirements Yes 

Provide a Software System Safety Assessment (SSA) Report. Lists all 
software failure modes and conditions and categorizes by failure severity 

No (but more 
complex) 

Provide a Software Development Plan No 

Provide a Software Verification Plan Yes 

Provide a Software Configuration Management Plan No 

Provide a Software Quality Assurance Plan No 

Define Software Requirement Standards No 

Define Software Design Standards No 

Define Software Code Standards No 

Define Software Requirements and all Derived Requirements Yes 

Software Design and Traceability Document No 

Provide Tool Qualification Data (e.g., autocoders, compilers) No 

Provide Source Code No 

Provide Executable Object Code No 

Provide Software Verification Test Cases and Procedures Yes 

Provide Software Verification Results No 

Provide Problem Reports No 

Provide Software Configuration Management Records No 

Provide Software Qualify Assurance Records No 

Provide Plan for Software Aspects of Certification (PSAC) Yes 

Provide Software Accomplishment Summary No 

Provide Software Life Cycle Data Yes 
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III. Gap in Defining Adaptive Controller Requirements 

A critical gap which needs to be closed to facilitate certification is to develop procedures and methodologies to 
completely and correctly specify the design requirements of adaptive flight controllers.  These software 
requirements define as precisely as possible what the software is supposed to do.  DO-178B recommends that all 
requirements be written in a manner that allows them to be tested and may include such things as performance, 
precision, accuracy, and timing constraints.  The requirements are frequently decomposed into derived requirements 
to address such considerations as computer speed, memory size, interfaces, and frequency of inputs and outputs.  
Non-adaptive controller performance requirements are usually specified by well-known metrics such as gain margin 
and phase margin.6  In contrast, the requirements for adaptive controller performance are usually only easy to 
express in overall desired properties, but not using precisely defined metrics. 

A. Current State-of-the-Art 

Most software life cycles (development through deployment) begin with an analysis to carefully define the 
software requirements as shown in Fig. 2.  The left side shows the steps used to transform the requirements into 
software code.  The right side shows the steps of software integration and testing to make sure the code ultimately 
satisfies the software requirements.  The process of testing the performance of the final code against the defined 
software requirements is called software validation.  This is the meaning of the second "V" in the often used 
acronym "V&V" for verification and validation.  (The word validation is also often used in connection with model 
validation, but that is a very different process consisting of comparing the output of a model-based simulation 
against measured data.)  Software verification is the analysis and testing processes used to ensure the software code 
does what it was designed to do.   But proper verification testing does not imply successful validation testing. 

The most common reason software fails validation testing is that the requirements are incompletely or poorly 
defined.  Software developers may follow a verification process that proves that the software does exactly what it 
was designed to do algorithmically, but then discover that it does not meet the functional needs for control because 
of improper specification of the requirements at the outset.  Such failures are very expensive to correct because 
when an error is found late in the validation process, the entire software design, verification, integration, and 
validation process shown in Fig. 2 must be performed all over again. 

B. Further Research Needed 

Certification of adaptive control systems will be significantly aided by the development of more precise ways to 
specify requirements and by the development of automated analysis tools to support verification and validation 
using model-based design simulation. The availability of modeling and simulation programs such as 
Matlab/Simulink23 have encouraged the simulation of controller behavior prior to flight testing, and this has been the 
norm for many decades.  Learning accuracy and controller stability are features usually tested in simulation, but 
rarely are the requirements themselves integrated into the testing. 

 
 

 
 

Figure 2.  Software life cycle or development process. 
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One aspect that is emerging, however, is the concept of using aircraft, environment, and controller simulation 
models to fully evaluate software requirements at the outset of the controller design process.24  The idea is to 
perform the end-stage system validation testing against the design requirements using the simulation model.  The 
block diagram for this process is shown in Fig. 3.  This figure shows an iterative software development path that 
features a model-based simulation.  When the model is executed, the behavior of the controller can be observed and 
its performance assessed to see if it meets the software requirements.  If it does not, the software architecture block 
diagrams can be modified and the tests repeated.  The important feature of this approach is that it provides a means 
to perform end-stage validation of the requirements prior to writing any code for the actual target host computer.  
When complete, the software development for the actual control computer follows the same path as shown in Fig. 2, 
but now it is far more likely that costly end-stage validation problems will be encountered. 

A gap that exists in this scheme is the lack of well-accepted performance metrics with which to both describe the 
requirements and create the necessary validation tests.  For adaptive controllers, verification of learning algorithm or 
system identification adaptation function is of paramount importance.  However, straight-forward tests of this type 
are difficult to establish.  Reference 25, for example, holds that verifying the correct neural network weights have 
been learned for a closed-loop system represents an NP-complete hard (generally unsolvable) problem.  Although 
the adaptive controller learning algorithm or system identification method can be coupled to the controller and the 
whole system tested as a unit in simulation, this ignores the obvious merit of being able to prove proper learning 
behavior as part of a certification process.  One possibility may be to separately test learning algorithms and system 
identification methods in simulation using contrived aircraft models that have a unique, known solutions.  The 
effects of measurement noise, process noise, persistent excitation, and ad hoc means to stop learning for low control 
errors might then be easily evaluated for their effect on learning.  One such attempt at doing such experimentation 
for helicopter adaptive vibration and noise control algorithms is presented in Ref. 26.  Such simulation cannot verify 
the learning behavior of over-parameterized systems, yet can provide proof that the basic learning algorithm was 
verified to work at least under ideal or known test conditions. 

IV. Gap in Simulation Models for Adaptive Control 

Since DO-178B presently allows certification credit to be obtained for both high-fidelity simulation testing as 
well as actual flight testing, it is highly likely that simulation will become an important part of the certification 
process for adaptive systems.  As will be discussed below, some aspects of adaptive controller behavior can only be 
efficiently evaluated in simulation, rather than by complex mathematical analysis.  A difficulty for certification, 
however, is the lack of uniform simulation methodologies for highly non-linear and non-deterministic flight control 
systems.  To get simulation credit for an adaptive controller, some standardization will be required.  Hence one gap 
area is held to be the definition of common simulation models to test various aspects of adaptive control system 
performance.  Aside from certification, development of such models would also foster the creation of better 
controllers by providing a common benchmark for comparison. 

 

 
 

Figure 3. Model-based design methods tests candidate software designs for conformance to requirements 

prior to producing code for the target computer. 
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A. Current State-of-the-Art 

Adaptive control system simulation can be done in a variety of ways.  To keep simulation costs down, the first 
step in the simulation hierarchy is usually done on a desktop computer with a linearized model and linear 
aerodynamics representations.  Desktop simulation is usually followed by more complex types of simulation.  One 
of these is sub-scale or model testing using unmanned model aircraft.  More commonly, the simulation complexity is 
first increased through the incorporation of non-linear aerodynamic and structural dynamic models.  These 
simulations are usually run on a dedicated workstation computer platform.  The next step level of fidelity includes 
using the actual target flight control computer in the simulation, as well as other hardware placed in the control loop 
such as cockpit control hardware and driving it with simulated sensor input.  After this may follow motion-based 
simulation by a test pilot in a simulated cockpit environment that receives both visual and motion feedback.  The last 
step is testing on the actual target flight vehicle. 

The present state-of the art is to analyze adaptive system learning convergence and stability using simulation 
environments thought to provide enough fidelity to model significant nonlinear aerodynamics, dynamics, and other 
factors.  Simulation provides a fairly rapid way to 

• Evaluate and compare different learning algorithms, 

• Tune control system gains and learning gains, 

• Determine how much learning is actually being accomplished at each step of the simulation, 

• Evaluate of the effect of process and measurement noises on learning convergence, 

• Determine learning stability boundaries, 

• Test algorithm execution speed on actual target flight computer, 

• Conduct piloted evaluation of the learning system in a flight simulator, or, 

• Simulate ad-hoc techniques of improving the learning process, such as adding persistent excitation to 
improve identification and convergence, or such as stopping the learning process after error is less than a 
specified amount. 

A common practice done in simulation to evaluate the effect of controller gain selection is to use variations of 
the Monte Carlo analysis method.27  In this method, the range of values for each parameter to be varied in simulation 
are determined beforehand.  Within this range, a finite number of parameter test values are selected.  If nothing is 
known about the parameter's expected value, then a uniform spacing throughout the parameter range is a logical 
choice.  Alternatively, if the expected value of a parameter is known, then the test values can be more closely spaced 
near the expected value.  Once all parameter test values have been selected, the matrix of simulation runs is 
comprised of every parameter varied in combination with all other parameter values.  So, if there are three 
parameters that can take 5 unique values each, the number of simulation runs needed to evaluate the full matrix of 
possible combinations is 35 or 243.  Even for non-adaptive controller simulation, the Monte Carlo method can be 
very time consuming considering the number of possible changes in the parameters needed to describe variations in 
the flight condition (airspeed, altitude, weight, etc.).  When number of parameters becomes larger (as in the case of 
adaptive controllers), the number of simulation cases required can easily render the task of full Monte Carlo analysis 
intractable, except for very sparse parameter variations that leave large portions on the state space unexplored.  From 
a certification standpoint, that is unacceptable. 

B. Further Research Needed 

A critical aspect of obtaining certification credit for simulation work will be proofs that the simulation fidelity is 
acceptably high so that important nonlinear effects are not missed. As has been cited above, the lack of common 
simulation model will likely inhibit both certification and the comparison of adaptive controller performance.  The 
development of benchmark models is not an easy task and represents an important gap in the certification pathway 
for adaptive controllers. 

Further work is needed to efficiently extend the important method of Monte Carlo analysis to adaptive controller 
evaluation.  One method being studied by NASA under the Aviation Safety Program to help close the certification 
gap is to look at ways to extend the traditional Monte Carlo analysis method to assess the robustness of adaptive 
control systems.  At the Langley Research Center, an analysis tool called RASCLE (for Robustness Analysis for 
Control Law Evaluation) has been developed to help explore combinations of learning system parameters and 
operating conditions.28  The RASCLE simulation tool is used to interface with existing nonlinear simulations and 
incorporates search algorithms to uncover regions of instability with as few runs as possible.  RASCLE uses a 
gradient algorithm to identify the direction in the uncertainty space along which the stability of the system is most 
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rapidly decreasing.  RASCLE provides an intelligent simulation-based search capability that can be used in Monte 
Carlo simulation evaluations.29  At the Ames Research Center, another approach to extend Monte Carlo analysis has 
been studied for the analysis of large, complex aerospace vehicles having highly coupled, nonlinear behavior and 
many degrees of freedom.  In this approach, an algorithm has been developed to limit the number of combinatorial 
cases required of Monte Carlo analysis and to explore parameter interactions in a systematic (but not parametric) 
fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a 
Bayesian multivariate clustering technique (AutoBayes) and supervised learning of the critical parameter ranges 
using the machine-learning tool TAR3, a treatment learner.30  Covariance analysis with scatter plots and likelihood 
contours are used to visualize correlations between simulation parameters and simulation results. 

The certification of adaptive controllers might also be aided by the development of probabilistic uncertainty 
models for simulation in order to quantify their robustness.  Reference 31 discusses the development of probabilistic 
uncertainty models to assess the effect of parameter variations on controller stability.  By making various cross-plots 
using the controller parameters, the plot space can be divided into regions called the Failure Domain and the 
Admissible Domain.  By varying the parameters, probabilistic uncertainty methods can define a set of plants and 
associate a weight (or probability) for each.  This then facilitates a search for a robust controller by being able to 
quantify how far away the controller class is from instability or some other problem by the parameter variation 
method known as homothetic deformations. 

The certification of adaptive systems will also likely be aided by the development of hybrid simulation models 
that can model the full control system as an integrated whole, rather than each system in isolation from each other.  
Hybrid models can be very complex and there are different definitions of “hybrid model” in usage today.  Reference 
32 defines a hybrid adaptive controller as a combination of direct and indirect adaptive control.  Hybrid systems 
have also been used to define systems comprised of finite state executive controllers coupled to a continuous domain 
adaptive controllers.20,33  A related characterization of a hybrid system is one in which a finite state controller using 
a continuous learning algorithm is coupled to a discrete model of the (normally) continuous environment.34  This 
characterization might seem odd, but using a hybrid model to represent the continuous state vector as a discrete 
variable is being studied as a means of leveraging the power of model checking software such as SPIN35, NuSMV36, 
and JPF237,38.  Model checking is a technique by which a finite state system model can be exhaustively explored to 
make sure the system never reaches an unacceptable state.  The method relies on being able to express adaptive 
controller safety properties as assertions in temporal logic and having a suitable approximation function to convert 
the continuous variables into discrete values.34 

V. Gap in Proving Learning Stability and Convergence 

The critical gap in the verification plans for adaptive control systems is the lack of procedures that can reliably 
verify that the learning algorithm or system identification method learns correctly and converges to the correct 
solution in an acceptable time.  The provision of this guarantee is probably the most important aspect of a viable 
verification plan for an adaptive control system.  Other than learning and system identification, there is no difference 
between adaptive and non-adaptive controllers, so proving the learning process is stable and convergent at all flight 
conditions and vehicle configurations is of paramount importance. 

Consider the neural network neuron shown in Fig. 4.  A learning algorithm of the type 
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is typically used to update the weight values based on some error metric, e.  This error could be formed as the 
difference between the measured state of the aircraft and the state predicted using the model parameters, w.  The 
function f depends on the learning algorithm used (e.g., steepest descent, Gauss-Newton, Levenberg-Marquardt, 
etc.). It can be seen in Fig. 4 that if the six weighted inputs are summed together to form one output, the values of 
the weights offering a correct solution is not necessarily unique, nor even guaranteed to exist.  System identification 
methods for transfer matrix identification are alike in this respect because the neuron shown in Fig. 4 is 
mathematically equivalent to a row-column matrix multiplication operation.  There are many excellent texts39 that 
have analyzed the necessary conditions for a unique solution.  Since there are six inputs and one output, the 
minimum requirement is that the outputs be known for at least 6 linearly independent input vectors.  Then six 
equations in six unknowns exist, and values of the weights can be determined,  subject  to  the effects of noise on the  
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Figure 4.  Neural network neuron. 

 
measurements.  However, if the second input is the square of the first input, and the third input is the product of the 
fourth input and the first input, and so on, the inputs are not linearly independent and the existence of a solution may 
be possible only in the sense of finding a set of weights that is optimal according to some specified criteria.  Neural 
networks often employ such input combinations to offer superior curve fits to nonlinear data. 

A. Current State-of-the-Art 

Mathematical proofs of adaptive controller stability generally seek to show that the vehicle state returns to a 
neighborhood about the undisturbed state for every defined disturbance.  The most commonly used proof of this is 
based on Lyapunov's second method.4,40-42   For linear time invariant systems of the form, 

  

Axx =
•

 
 

where x is the state vector and A is a matrix, the Lyapunov method states that the system is stable (will return to the 
origin) if a Lyapunov function V(x) can be found that is always positive and that has a time derivative that is always 
negative or equal to zero, or, 

 

( )

( ) 0

0

≤

>
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Unless much is known about the dynamics of the combined learning system and adaptive controller, the 

Lyapunov function is usually chosen as the simple quadratic function, 
 

( ) PxxxV T=  

 
and the system is said to be stable if, and only if, given any symmetric positive-definite matrix Q, there exists a 
symmetric positive-definite matrix P, which is the unique solution of the set of 

 

QPAPAT −=+  

 
equations.4   Although finding a Lyapunov function has in the past been somewhat of a cumbersome trial and error 
process, recent advances in semidefinite programming and semialgebraic geometry have afforded more of an 
algorithmic procedure to find valid Lyapunov functions through the use of the sum of squares (SOS) method.43 

B. Further Research Needed 

From a certification perspective, a weakness of the Lyapunov approach to prove stability is that it requires a 
polynomial representation of the plant (A matrix) for all flight conditions of interest.  If the values of this 
representation change, perhaps due to aircraft damage, then nothing can be said about controller stability based on 



 
American Institute of Aeronautics and Astronautics 

092407 

 

10 

knowledge of the previous plant matrix.  More importantly, the Lyapunov analysis only guarantees the ultimate 
stability of the learning algorithm; the proof does not guarantee how fast the system returns to the origin.  In 
adaptive controller parlance, this means that Lyapunov proofs cannot guarantee the rate of learning convergence.  
This is an important point for system performance, because if learning happens too slowly, an adaptive controller 
may be rendered ineffective for the control task at hand. 

Although the Lyapunov approach to stability determination rests on a firm mathematical foundation, a problem 
using this method for the certification of adaptive control systems is that there is a gap between the mathematician’s 
knowledge and the understanding of the certification official who needs to see a more easily understandable 
explanation that offers easy assessment.  A mathematical proof that is understood only by experts in the control field 
will fail to inspire certification authorities that all due diligence has been done to ensure safety.  Moreover, since 
these proofs depend on knowledge of the “A” and “B” matrices of the control system representation, 

BuAxx +=
•

, and these may actually change with time (e.g., with aircraft damage), Lyapunov proofs may well 
lack the sufficient conditions necessary to ensure adaptive controller stability.  A similar criticism holds for the 
method of attempting to prove regions of controller stability through the use of barrier certificates.44,45  Like the 
Lyapunov approach, this method seeks to prove that the state trajectories starting from a given set of initial 
conditions never reach an unsafe region.  It is also fairly difficult to understand without extensive mathematical 
training.  The barrier certificate represents a guaranteed upper bound on the probability that the system trajectories 
do not reach the unsafe set of states.  However, application of the method requires that the plant be expressed in 
polynomial form and that the boundaries of the unsafe states also be expressed in the same way.   

To help close this gap in the certification process, it is held that Lyapunov stability analysis needs to be 
augmented by the development of metrics to measure adaptive control system stability and robustness.  Metrics that 
can assess how far away the system is from instability are needed that are analogous to the gain margin and phase 
margin metrics used to assess non-adaptive, linear controllers.  The metrics need to ones that can be easily assessed 
and related to physical quantities that can be easily measured. A certification test to assess “how far away” from the 
true values the learned or identified parameters of the control system are would be particularly valuable.  

The lack of methods to evaluate the effects of measurement and process noise on learning convergence rates is 
another gap.  In theory, it is usually possible to show that learning convergence can be related to the degree of linear 
independence present in the control input vectors.26  In practice, measurement noise and/or process noise removes 
this independence as the controller converges to a near optimal control solution.  In this case, the learning algorithm 
or system identification method will diverge because the learning process seeks to find a relationship between small 
(real) changes in the control vector to changes in the measurements resulting largely from measurement noise.  
Since this relationship is a random variable (or like the noise distribution), the dynamics of the plant become lost. 
The effect of noise on learning and identification performance as well as ad hoc approaches such as disabling 
learning during period of low control error are difficult to analytically evaluate, and so simulation tools offer hope. 

Yet another gap is that methods to find acceptable gains for stable learning must be found other than the time 
intensive trial and error process.  It has been found through analysis that high adaptation gains will often lead to high 
frequency oscillation in the tracking errors, especially in poor signal to noise environments.4,32  This means that 
acceptable gains for stable learning performance must be found by trial and error, and some means of high-fidelity 
simulation to choose the compromise between rapid learning and oscillatory tracking would be useful.32 

It is also known that convergent adaptive control system learning or system identification convergence usually 
requires persistent excitation.2  This problem generally occurs when the controller computes the correct optimal 
control before the system identification or learning method completely converges.  If the controller is able to find a 
control vector that effectively nulls the error between the desired state and measured state, then updates to the 
learned or identified values based on that error signal will also tend to zero and the system will not learn until the 
control error becomes higher.  A persistent excitation signal added to the control signal yields more convergent 
learning, but at the expense of poorer steady-state controller performance.  An alternative is to disable the learning 
process when the control error becomes low, but this requires further study.  References 32 and 26 provide detailed 
insight to this problem.  Better simulation methods need to be developed to enable control engineers select the 
correct degree of persistent excitation and to acquire a knowledge base from which to judge the how this excitation 
effects the behavior of the actual control system. 

VI. Gap in On-Line Monitoring Tools 

The development of on-line tools to monitor adaptive controller performance after deployment may form a 
necessary part of a certification plan.  These tools would offer a way to make a system health management 
assessment to indicate when controller learning is acceptably good or when the aircraft is beyond control.  On-line 
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tools of this nature may be required in the event analytical or simulation testing is unable to verify convergent, stable 
learning from every possible flight condition and vehicle state.. 

A. Current State-of-the-Art 

At the present time, tools to assess the performance of adaptive flight control systems are an area of great 
research interest.  One example of an on-line software assurance tool is the Confidence Tool46 developed under the 
NASA Aviation Safety Program.  This tool provides a useful metric to assess neural network weight convergence 
using a Bayesian approach.  The Confidence tool is a dynamic monitor which checks the output values of a neural 
network based controller and determines a confidence measure to evaluate the correctness of the neural network 
weights based on a statistical model of the learning system.  The Confidence tool dynamically calculates a metric of 
neural network learning called the confidence measure.  This value can be used as a metric related to control system 
health. 

An on-line monitoring tool for in-flight stability evaluation has been developed by the NASA Dryden Flight 
Research center for the X-38 crew return vehicle.47  This method introduced a small-amplitude tailored-force 
excitation to the elevator and rudder control surfaces at specific frequencies.  The banded frequency response was 
then used to calculate the stability margins of the flight control system using a modification of the method in Ref. 
48.  A recursive Fourier transformation was used to make the method compatible with real-time calculation. The 
stability calculated by the on-line method was shown to compare well to results obtained using the X-38 nonlinear 
simulation.  For the certification of adaptive control systems, such a method might be extended to evaluate adaptive 
control system stability and make on-line predictions of unstable regions in order to avoid them. 

B. Further Research Needed 

While research is needed to develop on-line, adaptive controller health assessment tool, another need is to extend 
formal methods to analyze executive flight controller software of the real-time operating system.  Formal methods 
have almost exclusively been developed for the assessment of finite state systems, rather than for the continuous 
domain of adaptive control. Nevertheless, formal analysis tools may be extendable to the verification of executive, 
outer-loop (or supervisory) adaptive controllers.  For example, Ref. 49 describes an application of the NASA Ames 
Java PathFinder model checker to the control the guidance of a robotic vehicle.  Using compositional verification to 
verify that the interface logic between components will function properly when integrated together is a valuable 
concept that works well when combined with model checking of large systems.  The difficult part of extending these 
methods to adaptive control is finding ways to represent the continuous state vector and system safety assertions as 
finite state temporal logic assertions.   If a hybrid model abstraction for the adaptive system can be found, then the 
adaptive control states become finite values. This allows for the recognition of previous “states” in the model 
checking sense of the word, and hence an exploration of the continuous model checking space becomes possible.  Of 
course, this search is exhaustive only to the extent the approximation function is valid.  If the approximation 
function is too coarse, important states will likely be missed. 

 

VII. Gap in Adaptive Controller Certification Plans 

The software development process described in RTCA DO-178B for airborne software recommends that the 
verification and validation plans are developed before any code is written.  Verification and validation plans for 
certifiable software need to provide a test matrix together with an explanation why each test point has been chosen 
and how together all of the test points will provide adequate test coverage.  DO-178B recommends that the report 
should include a description of the conditions under which each test is to be performed and state the pass/fail 
criteria.  Step by step instructions for performing each test are to be provided along with instructions with how to 
evaluate the test results.  DO-178B stresses that it is important that these procedures and criteria be developed prior 
to the actual testing. 

A difficulty with even non-adaptive controller development is that the usual path of controller software 
development is analysis immediately followed by desktop simulation and then other higher-fidelity simulation test, 
possibly including sub-scale testing.  The simulation tests are not formal software verification tests, but rather just 
attempts to evaluate the performance of the learning algorithm and controller performance.  The dissonance between 
this ad hoc development process and the orderly process advised by DO-178B indicates the need for a better 
certification plan for adaptive control systems development that is more attuned to real-world development 
practices. 
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A. Current State-of-the-Art 

It is not possible to mention all of the on-going efforts by industry and government offices to develop adaptive 
flight control systems.10,13,15,16,35,50-53   The Air Force VVIACS (Verification and Validation of Intelligent and 
Adaptive Control Systems)54 and the NASA IRAC (Intelligent Resilient Adaptive Control)55 represent multi-year 
programs with industry partners that have been initiated to define methodologies and test procedures for adaptive 
flight control systems.  Although the VIVIACS program has ended, the IRAC Program continues to be sponsored by 
the NASA Office of Aviation Safety.   The goal of the IRAC Program is to conduct research to advance the state of 
aircraft flight control to provide onboard control resilience for ensuring safe flight in the presence of unforeseen, 
adverse conditions. The objective is to advance the state-of-the-art of adaptive controls as a design option to provide 
enhanced stability and maneuverability margins for safe landing.  It is anticipated that the outcome of the IRAC 
project research will be a set of validated, multidisciplinary integrated aircraft control design tools and techniques 
for enabling safe flight in the presence of adverse conditions such as structural damage, control surface failures, or 
aerodynamic upsets.  With regard to the certification of adaptive flight control systems, it is hoped that the analysis, 
simulation, sub-scale and full-scale flight tests of this research program will help form the basis for a valid Plan for 
Software Aspects of Certification (PSAC) for adaptive flight control systems, or perhaps even the basis for a better 
certification process for adaptive flight controllers. 

B. Further Research Needed 

Further research is needed to determine the best practices for a workable adaptive control system certification 
plan.  Besides the gaps identified above, there are several other aspects which need to be considered as well.  A very 
practical aspect of a flight control systems is that DO-178B advises that safety-critical software should provide a 
measure of software redundancy and fault tolerance.  The preferable level of redundancy is two systems doing the 
same thing, but using different calculation methods to arrive at the same answer.  This is referred to in DO-178B as 
redundancy achieved by using dissimilar implementations.  A problem with using this technique with adaptive flight 
controller software is that the dissimilar implementations could take different control trajectories to achieve the same 
end state and yet not be comparable along the way.  Another aspect of a viable certification plan is to address the 
level of fault tolerance required of the control system.  Verification of software health management software 
operating on partitioned real-time operating systems (RTOS) to ensure any failures in the controller remain isolated, 
will be critically important for both aeronautics and space applications.56  Guidelines for these systems in not 
provided in DO-178B, but rather in ARINC-653.57 

More research needs to be conducted in cooperation with the FAA to explore alternative means of compliance to 
DO-178B.  Once a sufficient set of best practices for the verification and validation of adaptive flight control 
systems becomes available, it is possible that these practices could be grouped to form a Safety Case argument for 
adaptive flight control systems.  Safety cases have been created for certification of nuclear industry in Europe and 
off-shore oil refineries in Australia.58,59  A safety case is a document that identifies all hazards and risks, describes 
how the risks are controlled, and describes the safety management plan to ensure the controls and guidelines are 
effectively and consistently applied.  The safety case represents a collection of processes to ensure all identified 
risks are mitigated.  In this way, the development of stability analysis methods for adaptive controllers, metrics for 
adaptive controller performance (or learning), hybrid high-fidelity simulation methods, the usage of formal methods, 
and other technologies mentioned above might become part of the safety case.  In essence, the safety case argues for 
software certification on the basis that every best practice to ensure safety has been followed.  Whether or not this is 
the same thing as proving the system is safe is a valid question. In fairness, however, any certification procedure 
fulfilling the spirit of the DO-178B guidelines might also end up not being safe. 

VIII. Summary 

This paper has provided an examination of the gaps between current state-of-the-art methodologies used to 
certify airborne software and what is likely to be needed to satisfy FAA airworthiness requirements for the 
certification of adaptive flight control systems.  Adaptive controllers (as defined herein) use system identification or 
some form of on-line learning algorithm to identify optimal controller gain settings, system transfer matrices, and/or 
stability control derivative matrices in real-time.  The gaps presented in this paper include the lack of a certification 
plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive 
controller stability and convergence, the need to develop metrics to evaluate adaptive controller performance at 
normal and off-nominal flight conditions.  This paper has also presented for each gap area a description of the 
present day state-of-the-art and what further research efforts will likely be needed to close the gaps remaining in 
current certification practices.  The areas addressed include advances in hybrid simulation methods, the development 
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of new methods to analyze learning algorithm stability and convergence rates, the development of performance 
metrics for adaptive controllers, the application of formal software assurance methods, the development of on-line 
software monitoring tools for adaptive controller health assessment, and the creation of a certification case for 
adaptive system safety of flight. 
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